
Comparing and Contrasting 6 Methodologies Currently Being

Used for Object Oriented Analysis and Design

By: Morteza Abdolrahim Kashi

Computer Science Department

Concordia university, Montreal, Quebec, Canada

Abstract:

In this article, I compare and contrast 6 formal approach of object oriented analysis and

design methodologies. First, each methodology is explained by its meta-data and meta-

process model. Second, the comparison of those six methodologies is performed

considering each methodology’s explanation. Finally, the similarity and differences

between the 6 methodologies are given in tables. Looking at these tables, one can

compare and contrast the 6 methodologies easily.

1-Introduction:

In this article, I compare and contrast 6 methodologies currently being used in Object

Oriented Analysis and Design. I use the abbreviation of OOADM for “Object Oriented

Analysis and Design” all across this article. There are more than 12 popular OOADMs

but none of them is said to be the best OOADM. The reason for that is that each

OOADM has different specifications and functionality compare with others. For

example, some OOADMs allow objects to change their class membership where some

OOADMs do not allow objects to change their class membership. But one may ask

himself or herself that what OOADMs he or she has to choose. To answer to this

question, one must have a good mentality about the correct comparison among the

available OOADMs. This comparison sounds a little hard since each OOADM has its

own set of concepts and notations. The comparison of methodologies, also, depends on

the vision of the person who wants to do the comparison.

The best way is to compare OOADMs when we look at all OOADMs in a standard way

and a uniform view.

First, I will give a short description of each 6 OOADM I want to compare and contrast.

Second, I give the Meta modeling of the considered 6 OOADMs [23]. For each

methodology, I consider its aim, concept, steps, technique, and graphical notation.

According to all information I give, I will bring two Meta models as following:

• Meta-process model that shows the design and analysis used by each

methodology

• Meta-data model that shows the techniques and concepts belong to each

methodology

Third, I will use the Meta models of the considered methodology to compare those

methodologies in the following respects:

• The concepts

• The analysis and design steps

• The techniques is used in each methodology

Forth, I will bring my conclusion about comparing and contrasting the chosen 6

methodologies to be discussed.

Finally, I will give the references and full bibliography for my paper.

2-Object Oriented Analysis and Design Methodologies’ Description

I have chosen 6 methodologies to compare and contrast. These six methodologies are

given by Booch [2], Coad and Yourdon[7,8], Martin and Odell[17], Rumbaugh et al.[19],

Shlaer and Mellor[20] and Wirfs-Brock[24] et al. These methodologies are chosen since

they are accepted as real Object Oriented Analysis and Design methodologies. I will

discus these 6 methodologies as following:

2-1 Object Oriented Design with Applications (OODA) by Booch [2]:

This method is basically for the design stage of projects. Booch explains few

specifications of general properties of well-structured complex systems. All systems

which are made by Object Oriented Design Analysis Methodology should have all of

those specifications. In Object Oriented Design Analysis, the problem domain is modeled

from two different respects. These two respects include the logical structure of the system

and the physical structure of the system. Both static and dynamic semantics are modeled

in each respect. Object Oriented Design Analysis provides variety of procedures to do

these two important jobs.

2-2 Object Oriented Analysis and Object Oriented Design by Coad & Yourdon [7,

8]:

This methodology depends on a number of general principles for managing the

complexity of systems. During the analysis phase, the problem is divided into five layers

in which classes, objects, the inheritance structures, relationships, message connections,

and other things are included.

In the design phase, these five layers are changed and improved according to four

components: a Problem Domain component, a Data Management component, a Task

Management component and a Human Interaction component. Graphical notations are

available for showing the five-layer model of the problem domain, the dynamic behavior

of objects, and the functional structures.

2-3 Object Oriented Analysis and Design (OOAD) by Martin & Odell [17]:

This methodology takes advantage of the set theory and logic. This methodology stresses

on describing the behavior of objects. There are a lot of techniques developed to specify

objects and their relationships in this concern in order to describe the dynamic behavior

of objects and to capture the high level business processes.

2-4 Object Modeling Technique (OMT) by Rumbaugh, et al. [19]

This methodology focuses on data instead of functions in order to make very stable

programs. This methodology consists of three phases including Analysis to explain the

problem domain, Systems Design to design the overall structure of the system, and

Object Design to refine the Object structures for an efficient implementation. This

methodology has methods to explain the problem domain from three different

perspectives including: the static structure of Classes and Objects, the dynamic behavior

of Objects, and the functional structures.

2-5 Object Oriented Systems Analysis (OOSA) by Shlaer & Mellor [20]

This methodology includes object-oriented analysis and gives a methodology to solve

some problems we have in the Structured Analysis approach. The most important job of

this methodology is to analyze the static specifications of Objects. All Techniques in this

methodology are given for modeling the static, the dynamic, and the functional

specifications of objects.

2-6 Designing Object Oriented Software (DOOS) by Wirfs-Brock, et al. [24]

This methodology covers mainly the analysis phase of the systems development life

cycle. Two major concepts, abstraction and encapsulation, are used to manage the real-

world complexity. The DOOS methodology describes the problem domain as a set of

collaborating objects. A system is developed in two stages. During the initial exploratory

phase objects, their responsibilities and the necessary collaborations to fulfill these

responsibilities are identified. The detailed analysis phase streamlines the results of the

first phase. Two graphical techniques are introduced for the second phase. One technique

is to show classes and class structures and the other is to depict classes, subsystems and

client-server relationships.

3- Meta-Modeling of OOADMs

Meta-models are conceptual models of modeling methodologies or techniques. There are

two figures of a systems development methodology: the processes consist of the steps

with related input and output products and the principles that are used to make the

representation of the intermediate and final products of the methodology. In structured

analysis, for instance, the processes give the steps leading an analyst to make data flow

diagrams from requirements specification, and the input and output products are the

results of each analysis step, such as data flow diagrams at different levels. The concepts,

in this example, consist of data store, process, data flow, etc. These two aspects,

processes and concepts, are analogous to the well-known dichotomy of control and data

of software systems [12].

 In this article, the processes of each of the six OOADMs is brought in a meta-process

model, while its concepts and the associations among them, as applied in the various

diagrammatic and textual techniques of the methodology, are described by a meta-data

model. The meta-process models and methodologies and are used side by side for an

extensive comparison, which is discussed in the next section.

Since I have limitation in the length of this article, I explain the meta-modeling approach

by explaining one meta-process model and two meta-data models. But the readers of this

article can find the complete set of meta-models of these 6 OOADMs in [23].

3-1- Meta-Process Model

Figure 3-1 shows the incomplete meta-process model for the methodology (DOOS) given

by Wirfs-Brock, et al. [24]. The activities of the methodology are shown in rectangles

and the intermediate and final products are shown in Ovals. Arrows are used to show the

output dependencies between activities.

Figure 3-1 is given on the next page.

Level 3: Identify Responsibilities

(1-2)Identity
Responsibilities

(1-6)Identity
Protocols

Responsibilities
on CRC Cards

Collaborations on
CRC
Cards/Complete
CRC Card

Hierarchy Graphs,
Venn Diagrams,
Contract Cards and
Revised CRC Cards

Collaboration
Graphs, Subsystem
Cards & Revised
CRC Cards

Complete
Specification

(1-5-1)Draw
Collaboration
graph

(1-5-2)Identify
and Name
possible
Subsystems

(1-6-1)Construct
protocols for each
Class

(1-6-2)Write
Design
Specifications for
Classes

Candidate
Responsibilities

Classes with
Responsibilities

Collaboration
Graph

Subsystems

Protocols

Class
Specificati
on (1-6-3)Write Design

Specification for
Subsystems

Figure 3-1: Meta-Process Model of
DOOS

Methodology

 Methodology

Leve1 1

Level 2: Construct DOOD
Model

DOOS Models

Construct
DOOS Model

(1-1)
Identity Classes

(1-3)Identity
Collaborations

(1-4)Identity
Hierarchies

(1-5)Identity
Subsystems

Requirement
Specification

Classes on
CRC Cards

(1-2-2)Assign
Responsibilities to
classes

(1-2-3)Find Additional
Responsibilities

(1-2-4)Add
Responsibilities to
CRC Cards

(1-5-4)Perform a
Walk-through

(1-6-4)Write
Design
Specification for
Contracts

Complete
Specification Simplified

Collaboratio
ns

Subsystem
Specificati
on

(1-2-1)Find
Responsibilities in
Requirement
Specification

Final
Responsibilities (1-5-3)Simplify the

Collaboration for
Sunsystems

The activities DOOS are shown in multiple levels. You can see the Construct DOOS

Model generic activity at level 1.For example, at Level 1, there is one generic activity

called Construct DOOS Model .This activity consists of six activities at Level 2.

Activities at Level 2 are decomposed into many activities at Level 3. Each activity has a

unique identifier. This identifier is used as a reference for the activity in the next section

in which I compare the activities of all OOADMs.

The meta-process only shows the products generated by each activity. For example, the

activity 1.2.2: Assign Responsibilities to Classes results in a list of Classes with

Responsibilities. For simplicity and readability of the diagram, I dropped the input arrows

from intermediate products to activities because these methodologies all assumed that

output from any activity is globally accessible by all other activities.

The notation used to show the meta-process model is known as Task Structure Diagrams

and was made for the SOCRATES meta-CASE environment [5, 6, and 22].

3-2- Meta-Data Models

Figures 3.2 and 3.3 depict the meta-data model for the methodology (DOOS) by Wirfs-

Brock, et al. [24] and the meta-data model for the methodology (OOA/OOD) by Coad

and Yourdon [7, 8], respectively. As shown in these two figures, I adopt the Extended

Entity Relationship (ER) model as proposed in [11]. In these figures, concepts of the

methodologies are mapped to entity types such as Class and Object. Associations and

constructs of the concepts are modeled as relationships with the cardinality constraints. In

Figure 3.3, for instance, the construct of Inheritance (generalization-specialization

structure) in OOA/OOD is represented as a relationship, is-generalization-of -- is-

specialization-of, between two Classes with (0, m) cardinality. In a methodology, a

concept may be the sub-concept of other concept. Such a relationship is also modeled in

the meta-data model. For example, DOOS has the concepts: Class, Abstract Class, and

Concrete Class.

These concepts are related in Figure 3.2 by the IS-A relationships, i.e., Abstract Class and

Concrete Class are both sub-concepts of Class. If, at the end of the analysis/design,

several final products are yielded, the concepts and associations that are used to represent

the products are grouped into clusters (modules) with thick border lines in the meta-data

model. The connections among the products are represented as relationships across

clusters.

For example, in the OOA/OOD methodology there are three final products, Service

Chart, OOA Diagram, and Object State Diagram. These three products were shown in

Figure 3.3 as three clusters, respectively. One of them, the Object State Diagram,

contained two concepts, Transition and State, and two relationships between them. There

are two relationships that link an OOA Diagram to an Object State Diagram; one is from

Class to the Object State Diagram cluster, and the other is between Service and State. The

former indicates that a class could have a state diagram that describes the states of its

objects over time, while the latter indicates that the state behaviors are defined by

Service. Some remarks should be made on the meta-modeling approach. Although in

principle an OOADM should be suitable, none of the proposed OOADMs could have

been used for meta-modeling in this research project, since this would create a prejudice

towards one of the methodologies. Also, we could have included more details in the

meta-data models and meta-process models. However, it was not necessary for this

particular comparison project because the information captured by these models is

sufficient for an extensive comparison.

Figure3-2: Meta-Data Model of the DOOS Methodology

Responsibility

Method

Venn-Area

Uses
(0, m)

Is Used
(1, m)

Belongs to
(1, 1)

Has
(1,1)

Belongs
to (1,1)

Has
(1, m)

Corresponds to
(1, m)

Is part of
(0, 1)

Has
(1,m)

(0, m)

Belongs to
(1, 1)

Public
Responsibilities

Private
Responsibilities

Signature of
Method

Client-Server
Contract Protocol

Class/Subsystem

Subsystem

Class

Abstract
Class

Concrete
Class

Object

Is Part of
(1, 1)

Collaborates with
(0, m)

Consists of
(1, m)

Is part of
(0,1) Is Subclass of

(0, m)

Is Subclass of
(0, m)

Instance of
(1, 1)

Instantiates
(1, m)

Consists of
(1, m)

 Defined for
 (0,m)

 Subject

 Service

Class &
Object

Attribute

 Class

 Object

Amount/
Range

 Transition

 State

Condition

Text
Block

 Loop

Service
chart object

Connected
With
(1, 1)

Connected
With
(1, m)

 (0, m)
(0, m)

(0, 1)

(0,1)

Service Chart

Belongs to
(1, 1)

Has
(0, 1)

Contains
(0, m)

Is Contained
in (1, 1)

Belongs to
(1, m)

 Has (1, m)

Belongs to (1, 1) Has (0, m)

Provide
(0, m)

Belongs to
(1, 1)

Has (0, 1)

Object state diagram

Uses
(0, m)

OOA Diagram

Is input
(0, 1)

Is output
(1, 1)

Is output
(0, m)

Is input
(1, 1)

Figure 3-3: Meta-Data Model of the
OOA/OOD Methodology

4: Comparison of the Methodologies

In this paper the comparison of the six OOADMs is performed in three categories: the

process, the concepts, and the techniques the methodologies provided. The comparison

drew information mainly from the meta-process models and meta-data models as

discussed in the previous section. Limited by the space, I present a part of results of the

comparison and refer the reader to the complete results in [23]. At the end of this section,

I also provide a short discussion of the implementation issues when these OOADMs are

used.

4.1: Comparison of the Processes

The comparison of the processes is performed by aligning the steps of the OOADMs side

by side and revealing the similar and different activities of the analysis and design. There

are several approaches of comparison, such as comparing all OOADMs to one of them or

creating an entirely new methodology to which these OOADMs are compared. After

carefully evaluating the possible alternatives based on the principle of unbiased

comparison, I take the approach of creating a so-called super methodology as the target to

compare.

This super-methodology is defined as the smallest common denominator of all activities

depicted in the meta-process models of the OOADMs. The partial results of the

comparison are listed in Table I, while the complete table contains over 100 rows. In

Table I, the activities of the super-methodology are listed in the leftmost column, and

each OOADM occupies one column. The following notations are used in the table:

¬ The activity identifier in its meta-process model. If this identifier is the same as

that of the super-methodology, it is omitted.

¬ A comparison indicator that compares an activity “S” of the super-methodology

to an activity m of an OOADM as follows:

¬ S '=' m the activity s is equivalent to the activity m.

¬ S '>' m the activity s does more than the activity m.

¬ S '<' m the activity s does less than the activity m.

¬ S '><' m A part of the activity s overlaps a part of the activity m and the other

parts of both activities do not overlap.

This activity is absent from the OOADM. For instance, Activity 1.2.1 (Identify objects

and Classes) of the super-methodology is equivalent to Activity 1.1.2 of DOOS as shown

in Figure 3.1, this activity of DOOS tries to find candidate classes abstracted from

various objects. This super-methodology activity does more than that of Activity 1.1.1 of

OOSA [20] which identifies only objects. Note that this activity is absent from OOAD

[17]. From Table I, I have drawn extensive conclusions about the similarity and

differences in these OOADMs. For instance, this table shows that OOAD [17] lacks

detailed analysis and design steps although OOAD provided very extensive discussion

about the analysis and design concepts and constructs. Because my objective in this paper

is to demonstrate the formal comparison approach, I omitted the discussion of the

comparison remarks. Please see [23] for the details.

4.2: Comparison of the Concepts

The concepts of the six OOADMs are compared in the following categories:

¬ The main concepts, such as Class, Object, etc
¬ The main relationships such as Inheritance and Whole-Part Structures
¬ The built-in operations such as Read, Write, etc
¬ The types of communications between objects
¬ The kinds of concurrency mechanisms

Table1: Comparison of activities

Activity of Super-methodology OOA/
OOD

DOOS OMT OODA OOSA OOAD

1.Construct the model
1.1 Study Requirements =1.1.1 =1.1.1 =1.1 <1.1.1
1.1.1 Understand Requirements
1.2.Find objects and classes
1.2.1 Identify Objects and Classes =1.1.2 =1.1.2 =1.2.1 =1.1.1 >1.1.1
1.2.2 Name Classes and Objects Well =1.1.3 <1.1.3 =1.1.3
1.2.3 Describe Classes and Objects =1.6.2 =1.1.6 1.2.2 >1.2.1

<1.3.4
=1.1.2

1.2.4 Apply Guidelines to Control
Classes & Objects

1.1.4 <1.1.3 1.1.4

1.2.5 Identify Abstract =1.1.4
1.2.6 Search for Missing Classes =1.1.5
1.3 Identify Relationships
1.3.1 Identify Inheritance
Relationships

=1.2.1 =1.4.4 =1.2.5 =1.3.2 >1.1.9

1.3.2 Identify Part-of Relationships =1.2.2 <1.2.3
1.3.3 Identify Multiple Structures =1.2.3
1.3.4 Identify Associations =1.4.3 <1.2.3 =1.3.1 =1.1.8
1.4 Define Attributes
1.4.1 Identify Attributes =1.4.1 =1.2.4 <1.3.4 <1.1.5
1.4.2 Position Attributes =1.4.2 <1.1.5
1.4.3 Check Attributes <1.4.4
1.4.4 Describe Attributes <1.4.5 =1.1.7
2. REFINE THE MODEL
2.1 Write Design Specification
2.1.1 Write Design Spec for Classes =1.6.2
2.1.2 Write Design Spec for
Subsystems

 =1.6.3

2.1.3 Write Design Spec for Contracts =1.6.4
2.2 Define Modules
2.2.1 Rearrange Classes & Operations =3.5.1
2.2.2 Abstract out Common Behavior =3.5.2
2.2.3 Use Delegation to Share
Implementation

 =3.5.3

2.3 Refine Methods
2.3.1 Construct Protocols =1.6.1 =1.6.1
2.3.2 Choose Algorithms =3.2.1 =3.2.1
2.3.3 Choose Data Structures =3.2.2 =3.2.2

I follow a similar approach as that for comparing the processes. A super set of concepts is

derived from the meta-data models of these six OOADMs and is used as the comparison

criteria for the concepts of these OOADMs. The results of the comparison form a table

with over 100 rows. A subset of this table is extracted and displayed in Table II in which

the concepts of the super-methodology are shown in the leftmost column. The notations

that are different from that of TABLE-I are as follows:

¬ “Strings”: This concept is equivalent to that of the super-methodology but the

term “String” is used.

¬ “(Number)”: It provides a footnote to the concept compared.

In Table II, for example, OOA/OOD [7, 8], OMT [19], OODA [2] and OOAD [17] have

the Whole-Part relationship concept except that OOAD calls this relationship as

Composition relationship, but DOOS [24] and OOSA [20] have no similar relationship.

4.3: Comparison of the Techniques

Eight different techniques are provided by these OOADMs to help an analyst/designer

capture objects, classes, partitioning of the analysis, object dynamics, system dynamics,

functional behavior, communication between objects, and implementation properties. The

comparison results are shown in Table III. In this table the concept to which a technique

is applied is listed in the leftmost column. Each entry of the table provides the name of

the technique used by an OOADM.

As shown in Table III, different methodologies may use different techniques to model the

same concept. For example, to model the dynamic aspect of objects, OOA/OOD [7, 91b],

OMT [19], OODA [2], and OOSA [20] use a technique similar to the state transition

diagram, while OOAD [17] uses event schema.

Concepts of Super-
methodology

OOA/
OOD

DOOS OMT OODA OOSA OOAD

MAIN ONCEPTS
Class & Objects =
Class = = = = Object Object

Type
Abstract Class = = =
Meta Class = =
Object = = = = =
Passive Object =
Active Object =
Attribute = = Field =
Derived Attribute =
Attribute Constraint = = = =
Method Service Responsibility Operation Operatio

n
 Operation

Method Signature Parameter = = Operatio
n
Paramete
r

Subject = Subsystem Module Class
Caregory

RELATIONSHIPS
Inheritance Gen-Spec Super/Subclass Super/Subclass Super/Su

bclass
Super/Su
btype(1)

Super/Sub
type

Multiple Inheritance = = = = =
Whole-Part
relationship

= (2) = = Compositi
on

Association Instance
Connection

 = Using
Relations

hip

Relations
hip

Relation

Derived association = Computed
Functions

Message connection = Collaboration Message
Relations

hip

Instantiation
relationship

OPERATIONS … … … … … …
COMMUNICATI
ON

… … … … … ….

CONCURRENCY … … … … … …

Table II: Comparison of Concepts

Naturally, there is a question on whether the same technique, say state transition diagram,

provided by different OOADMs is precisely the same. However, in this project, I do not

attempt to address this issue which is beyond our research.

4.4: Implementation Issues

To find out the smoothness of the transition from an OOADM to the implementation, I

decided to compare the concepts of the six OOADMs to the concepts of the six most

popular object-oriented programming languages (OOPLs). This comparison should not

be mistaken as the evaluation of the degree of coupling between OOPLs and OOADMs.

Instead, I compare how they might be matched. As pointed out by de Champeaux [10], an

OOADM should be independent of any implementation details.

 Table IV shows a subset of the table for DOOS [24]. Complete tables can be found in

[23]. Database management systems are very important for the implementation of an

information system. I think that it is better to go one step further and to survey which

OOPL is supported by object-oriented database management systems (OODBMS). After

surveying ten commercial OODBMS products 2 C++ is the only OOPL that is supported

by all OODBMS vendors 3, while a few OODBMS also support Smalltalk.

5: Conclusion

The main contribution of this paper is the use of the meta-modeling technique to build a

formal representation of six OOADMs and the comparison of the OOADMs based on

their uniform representation. This approach enables us to perform a more accurate,

unbiased, and extensive comparison as shown in this paper. In this way, errors of

misunderstanding or misinterpretation of methodologies can be detected and, therefore,

can be avoided during the comparison process.

Technique to
capture:

OOA/OOD DOOS OMT OODA OOSA OOAD

1. Objects

Object Layer
OOA model

 Object
Diagram

2. Classes/Class
Structures

Class layer
OOA model

CRC cards,
Venn/Diag,
Hierarchy
Graphs

Object
Diagram

Class
Diagram

Informat-
ion Model

Object
Schema

3. Partitioning of
the Class and
Class Structures

Subject
Layer OOA
Model

Subsystem
Cards

Modules Class
Category
Diagrams

 Object
Flow
Diagram

4. Object
Dynamics

Object State
Table

(1) State
Diagrams

State
Diagrams

State
Transition
diagram 2

Event
Schema

5. System
Dynamics

 Timing
diagrams

6. Functional
behavior

Service
Charts

 Data
Flow
Diagram

 Data Flow
Diagram(2)

7. Implementation
properties

 Subsyste
ms

Module/Pro
cess
Diagrams

8.
Communication
between
Classes/ objects

Message
connec-tions
OOA model

Collaboration
s
graphs

Event
Flow
Diagrams

Synchroniza
tion on
Object
Diagram

TABLE III: COMPARISON OF TECHNIQUES

Secondly, my research results provide information system professionals an

extensive survey of these six OOADMs and can assist information system professionals

in the evaluation and study of these methodologies. Furthermore, these results are a

valuable resource for organizations that are planning for a transition to object-oriented

technology. The meta-models and comparison tables provide blue-prints to correlate the

present I/S practice with some alternatives for this new technology. Finally, the formal

representation of these methodologies can be used to build a CASE tool that would

support multiple OOADMs.

The multi-methodology CASE tool concept is originated from the research area called

methodology engineering [16]. I purposely avoided to rate these methodologies.

First, a standard on what is a good OOADM would be required for rating these

OOADMs, which is not possible because of the current state-of-the-art of and the

divergent views on object orientation. I feel that none of these methodologies has reached

its mature stage and they will continue to evolve. Because of the rapid advance of object-

oriented technology, any conclusion I might draw would quickly become invalid.

Secondly, the quality of a methodology should be measured from all perspectives, such

as the complexity of and the scale of applications and the I/S development practice in an

organization that wants to adopt an OOADM.

This issue itself is a separate research topic. A limitation of this research is that I did not

compare the guidelines and rules provided by each OOADM. A formal system must be

employed for this purpose. I have spent a lot of time in building the meta-models so that

they are as accurate as possible. However, limited by the Entity Relationship model,

several concepts of some OOADMs are very difficult to represent. Consequently, the

accuracy of the comparison results may be affected. A better Meta model might be used

to overcome the problem. Finally, and most importantly, I did not compare how an

OOADM guides the user to design a better software system and to take the maximal

benefits of object-oriented technology, such as reusability. These issues demand further

research.

References:

 [1] Arnold, P., Bodoff, S., Coleman, D., Gilchrist, H., Hayes, F., An Evolution of Five

Object Oriented Development Methods, Research report, HP Laboratories, June 1991.

[2] Booch, G., Object-Oriented Design with Applications, The Benjamin/Cummings

Publishing Company Inc., Redwood City, CA, 1991.

[3] Brinkkemper, S., Geurts, M., van de Kamp, I., Acohen, J., "On a Formal Approach to

the Methodology of Information Planning," In: Proceedings of the First Dutch

Conference on Information Systems, R. Maes (Ed.), 1989.

[4] Brinkkemper, S., Formalisation of Information SystemsModelling, Thesis Publishers,

Amsterdam, The Netherlands, 1990.

[5] Brinkkemper, S., M. de Lange, R. Looman and F.H.G.C. van der Steen, "On the

Derivation of Method Companionship by Meta-Modelling,” In: Advance Working

Papers, Third International Conference on Computer Aided Software Engineering, Ed. J.

Jenkins, Imperial College, London, UK, July 1989. pp. 266-286. Also in: Software

Engineering Notes, journal of the Special Interest Group on Software Engineering of the

ACM, vol. 15, nr. 1, January 1990, pp. 49-58.

[6] Brinkkemper, S., A.H.M. ter Hofstede, T.F. Verhoef and G.M. Wijers, "A Meta-

Modeling Based CASE Shell to Support Customized Domain Modeling," In the

Proceedings of the ICSE Workshop on Domain Modeling, Eds. N. Iscoe, G.B. Williams

and G. Arango, Austin, TX, USA, May 1991, pp. 31-36. [7] Coad, P., Yourdon, E.,

Object Oriented Analysis (2nd Edition), Yourdon Press, Englewood Cliffs, N.J., 1991.

[8] Coad, P., Yourdon, E., Object Oriented Design, Yourdon Press, Englewood Cliffs,

N.J., 1991.

[9] Demurjian, S.A. and Hsiao, D.D., "Towards a Better Understanding of Data Models

Through the Multilingual Data Systems," IEEE Transactions on Software Engineering,

(14, 7) July 1988, pp. 946-958.

Major
Concepts of

DOOS

Smalltalk Objective-
C

Eiffel Object
Pascal

C++ CLOS

Class = = = Object type = =
Object = = = Object = Instance

Abstract
Class

< Class < Class < Class < Object
type

< Class < Class

Concrete
Class

Class Class Class Object type Class Class

Subsystem

 > Files ? >Unit >Files Package

Public
Responsibility

Public
method

Public
method

Exported
method

Function/
Procedure

Public
member
function

Public
method

Private
Responsibility

Private
method

Private
method

(Default) Private
member
function

Contract
Single
Inheritance

Super-
subclass

Super-
subclass

Ancestor-
descendant

Ancestor-
descendant

Derived
classes

Superclass

Multiple
Inheritance

 =

 Derived
classes

=

Collaboration

>
Message

> Message > Routine
call

> Function
procedure

call

Function
calls

Function
calls

 TABLE IV: Concepts Matching Between OOPLs and DOOS (Excerpt)

[10] de Champeaux, D. and Faure, P.,"A Comparative Study of Object Oriented

Analysis Methods," Journal of Object-Oriented Programming (JOOP), March/April,

1992, pp. 21-33.

[11] Elmasri, R. and Navathe, S, Fundamentals of Database Systems, The

Benjamin/Cummings Publishing Company Inc., 1989.

[12] Harel, D., "Biting the silver bullet: toward a brighter future for system

development," IEEE Computer, Vol. 25, no. 1, January 1992, pp. 8-20.

[13] Hong, S. and Maryanski, F., "Using a Meta Model to Represent Object-Oriented

Data Models," Proceedings of IEEE Six International Conference on Data Engineering,

Feb. 1990, pp. 11-19.

[14] Hong, S. and Maryanski, F., "Representation of Object-Oriented Data Models,"

Information Sciences, 52, Dec. 1990, pp. 247-284.

[15] Korson, T., et. al., "Managing the Transition to Object-Oriented Technology

(Panel)," in Proceedings of OOPSLA, Oct. 1992, pp.355-358.

[16] Kumar, K. and Welke, R., "Methodology Engineering: A Method for Situation

Specific Methodology Construction," in Systems Analysis and Design: a Research

Agenda, eds. W.W. Cotterman and J.A. Senn, forthcoming.

[17] Martin, J., Odell, J., Object Oriented Analysis and Design, Draft manuscript, 1992.

[18] Morgenstern, M., "A Unifying Approach for Conceptual Schema to Support

Multiple Data Models," Entity-Relationship Approach to Information Modeling and

Analysis, Editor P.P. Chen, North-Holland Corp., 1983, pp. 279-297.

[19] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., Object Oriented

Modelling and Design, Prentice-Hall, Englewood Cliffs, N.J., 1991.

[20] Shlaer, S., Mellor, S.J., Object-Oriented Systems Analysis: Modeling the World in

Data, Yourdon Press, Englewood Cliffs, N.J., 1988.

[21] Sorenson, P., J.-P. Tremblay and A. McAllister, " The Metaview system for many

specification environments," IEEE Software, vol. 5, no. 2, March 1988, pp. 30-38.

[22] Verhoef, T.F., Hofstede, A.H.M. ter, and G.M. Wijers, "Structuring Modelling

Knowledge for CASE Shells," In: Proceedings of the CAiSE 91 Conference, Trondheim,

Norway, Lecture Notes in Computer Science, Springer Verlag, Berlin, Germany, May

1991.

[23] Goor, G. van den, Brinkkemper, S., Hong, S., Formalization and Comparison of Six

Object Oriented Analysis and Design Methods, Master Thesis, Method Engineering

Institute, University of Twente, 1992.

[24] Wirfs-Brock, R., Wilkerson, B., Wiener, L., Designing Object Oriented Software,

Prentice-Hall, Englewood Cliffs, N.J., 1990.

[25] Wirfs-Brock, R.J. and Johnson, R.E., "Surveying Current Research in Object-

Oriented Design," The Communications of ACM, (33, 9) Sept. 1990, pp. 104-1124.

