
Full Description of new advanced Encryption Standard RIJNDAEL
Full Description of New Advanced Encryption Standard

By: Morteza Abdolrahim Kashi

University of Manitoba
Canada-Winnipeg

1. Introduction

This document is to describe Rijndael the new Advanced Encryption Standard. I show the

mathematics knowledge needed to understand this procedure then we explain the design

model of the Rijndael .Then I explain implementation of the cipher and the reverse of the

cipher. Then the advantage of this procedure is explained and we discus the limitations

existed in this procedure of encryption .We discus the ways this method can be extended

.I will introduce the references for this kind of encryption at the end of this paper.

2. Mathematics requirements

We need to know many operations which use bytes to do the operations where bytes are

Showing elements in the field GF (2 power 8). We have to consider other operations in

terms of 4 bytes word. Here we explain the basic mathematics needed to implement

Rijndael.

2. A Polynomial representation

To show a polynomial we consider a byte b is made from bits b0, b1, b2, b3, b4, b5, b6,

 b7 .We can consider this byte to show a polynomial as follow:

For example a byte that has a hexadecimal value of 47 has a binary value of 01000111

This represents the following polynomial:

7
7

6
6

5
5

4
4

3
3

2
210 xbxbxbxbxbxbxbb +++++++

2. A.1 Addition of polynomials

When we want to add two polynomials together we just add corresponding coefficients in

each polynomial in mod 2 . For example we have the following equation:

As we can see the binary coefficients in the first polynomial is 10111111 and the binary

coefficient for the second polynomial is 01110001 and the resulting polynomial has the

binary coefficient of 11001110. Clearly each bit in the binary coefficient of the result is

the result of XOR function of corresponding bits in each polynomial. For example we

have (1+1=0, 0+1=1, 1+0=1 and 0+0=0)

2. A.2 Multiplication

The multiplication is done in two phase. The first phase looks like the ordinary algebra

multiplication. We multiply each term of the first polynomial by each term of the second

one. Then we do addition operation as discussed before .For example we can have the

following multiplication:

If we have:

Where:

01
2

2
6

6 bxbxbxb +++

xxxxxxxxxxxxxx ++++=++++++++++ 236745623457)1()1(

1

)1()()()()()1)(1(
2567

233445672346

+++++=

+++++++++=+++++

xxxxx

xxxxxxxxxxxxxx

)(0))((1
2

2
34

4
5

5
6

601
2

2
3

301
2

2
3

3 3
xCcxcxcxcxcxcxcbxbxbxbaxaxaxa =++++++=++++++

302112033201102210011000 babababacbababacbabacbac ⊕⊕⊕=⊕⊕=⊕==

)()()(1)(1)(2346 xBxAxCxxBxxxxxA =+=++++=

Obviously C(x) can not be shown by a 4-byte vector. By changing C(x) modulo a

Polynomial of degree 4, we can reduce the degree to the degree below 4. When we are
in Rijndael algorithm we must do that by the polynomial:

So we will have the modular product A(x) by B(x) denoted by C(x) is defined as follow:

Where:

If we write this equation in the form of matrix multiplication we will have:

Let multiply B(x) by x. Then we have:

We can calculate x⊗B(x) by reducing above result by

Then we will have:

So we can show the multiplication by x using the matrix form as follow:

1)(4 += xxM

336322.353122134 bacbabacbababac =⊕=⊕⊕=

01
2

2
3

3)()()(cxcxcxcxBxAxC +++=⊗=

302112033332011022

32231001131223000

........

........

babababacbabababac

babababacbabababac

⊕⊕⊕=⊕⊕⊕=

⊕⊕⊕=⊕⊕⊕=



















⋅





















=



















3

2

1

0

0123

3012

2301

1230

3

2

1

0

b

b

b

b

aaaa

aaaa

aaaa

aaaa

c

c

c

c

xbxbxbxb 0
2

1
3

2
4

3 +++

ulex mod14 +

30
2

1
3

2 bxbxbxb +++



















⋅



















=



















3

2

1

0

3

2

1

0

00010000
00000100
00000001
01000000

b

b

b

b

c

c

c

c

3. Specification

 The Rijndael cipher is a kind of cipher that has iterated block cipher plus a variable

block length and a variable key length. Numbers of 128, 192, and 256 bits can be used to

assign to the length of the block and the length of the key. We explain the cipher structure

in this section.

3.1 The State, the Cipher Key and the number of rounds

We refer to the state as all transformations that operate on the intermediate result and the

intermediate cipher result is called a state .We can use a rectangular array of bytes to

show a State. We have 4 rows in this array, and we write Nb to show the number of

columns and can be calculated by dividing the block length by 32.We show all of above

explanations in the following figure where the state has Nb=6 and the cipher key has

Nk=4.Sometimes these blocks are shown in the case of one-dimensional arrays

consisting 4-byte vectors, when each vector includes the corresponding column in the

rectangular array representation .Then the length of these arrays are 4, 6 or 8

respectively and indices in the ranges 0..3, 0..5 or 0..7. 4-byte vectors will sometimes be

referred to as words.

A0,0 A0,1 A0,2 A0,3 A0,4 A0,5

A1,0 A1,1 A1,2 A1,3 A1,4 A1,5

A2,0 A2,1 A2,2 A2,3 A2,4 A2,5

A3,0 A3,1 A3,2 A3,3 A3,4 A3,5

A4,0 A4,1 A4,2 A4,3 A4,4 A4,5

K0,0 K0,1 K0,2 K0,3

K1,0 K1,1 K1,2 K1,3

K2,0 K2,1 K2,2 K2,3

K3,0 K3,1 K3,2 K3,3

Rijndael uses input and output at its external interface and they are one dimensional

 arrays of 8-bit bytes numbered upwards from 0 to the 4*Nb-1. So the length of the

blocks is 16, 24 or 32 bytes. The Cipher Key has also one dimensional array which has 8

bytes numbered upwards starting from 0 to the 4*Nk-1.

3.2 The round transformation
The round transformation includes four kind of different transformations. We can write

The round transformation in pseudo code as follow:
Round (State,RoundKey)
{
ByteSub(State);
ShiftRow(State);
MixColumn(State);
AddRoundKey(State,RoundKey);
}
The final round of the cipher is slightly different. It is defined by:
FinalRound(State,RoundKey)
{
ByteSub(State) ;
ShiftRow(State) ;
AddRoundKey(State,RoundKey);
}

3.3 Key schedule

 The Round Keys are obtained from the Cipher Key using the key schedule. This can
be done by two components: the key expansion and the round key selection. The
main thing is that we have to consider the following rules:

 The number of Round Key bits is equal to the length of block multiplied by the
 number of rounds plus 1.

 The Cipher Key is expanded into an Expanded Key

4. Implementation aspects

Rijndael cipher can be implemented on many processors and in good hardware. We

explain 8-bit processor. When we have 8-bit processor, we can program Rijndael

implementing the different component transformations. This makes it so straightforward

when it comes down to RowShift Round Key addition. If we want to implement ByteSub

we need to have 256 bytes. The Round Key addition, ByteSub and RowShift can be

combined and executed in the form of serial per State byte. We need to know matrix

multiplication in the field of GF (2 powers 8) if we want to do the transformation

MixColumn .We can show this fact as follow:

Tmp = a[0] ^ a[1] ^ a[2] ^ a[3] ; /* a is a byte array */

Tm = a[0] ^ a[1] ; Tm = xtime(Tm); a[0] ^= Tm ^ Tmp ;

Tm = a[1] ^ a[2] ; Tm = xtime(Tm); a[1] ^= Tm ^ Tmp ;

Tm = a[2] ^ a[3] ; Tm = xtime(Tm); a[2] ^= Tm ^ Tmp ;

Tm = a[3] ^ a[0] ; Tm = xtime(Tm); • [• •• =̂ T m ̂T mp ;

Now we explain more to clarify the subject. All coding is done in assembly language. If

we don’t want to have timing attacks we must pay attention on xtime to implement it by

taking a fixed number of cycles. We can do that by using dedicated table-lookup. We can

do key expansion in a cyclic buffer of 4*max (Nb,Nk) bytes. The Round Key is updated

in between Rounds. We can implement all operations in this key update on byte level. If

the Cipher Key length and the blocks length are equal or if they differ by factor 2, the

implementation is so easy. If we don’t have this situation, an additional buffer pointer is

required.

4.1 The inverse cipher

In the table-lookup implementation it is essential that the only non-linear step (ByteSub)

is the first transformation in a round and that the rows are shifted before MixColumn is

applied. In the Inverse of a round, the order of the transformations in the round is

reversed, and consequently the non-linear step will end up being the last step of the

inverse round and the rows are shifted after the application of (the inverse of)

MixColumn. The inverse of a round can therefore not be implemented with the table

lookups described above. This implementation aspect has been anticipated in the design.

The structure of Rijndael is such that the sequence of transformations of its inverse is

equal to that of the cipher itself, with the transformations replaced by their inverses and a

change in the key schedule. This is shown in the following subsections.

The inverse of a round is given by:

InvRound(State,RoundKey)
{
AddRoundKey(State,RoundKey);
InvMixColumn(State);
InvShiftRow(State);
InvByteSub(State);
}
The inverse of the final round is given by:
InvFinalRound(State,RoundKey)
{
AddRoundKey(State,RoundKey);
InvShiftRow(State);
InvByteSub(State);
}

5. Strengths and advantages of Rijndael compare to the other known ciphers

5.1

Even though we have large amount of symmetry, this method has ways to eliminate

symmetry in the behavior of the cipher. This is obtained by the round constants that are

different for each round.

5.2 Differential cryptanalysis

DC attacks are possible if there are predictable difference propagation over all but a few

(Typically 2 or 3) rounds that have a prop ratio (the relative amount of all input pairs that

for the given input difference give rise to the output difference) significantly larger than

((2 powers (1- n)) if n is the block length.

5.3 Linear cryptanalysis

LC attacks are possible if there are predictable input-output correlation over all but a few

(Typically 2 or 3) round significantly larger than (2 power n/2). An input-output

correlation is composed of linear trails, where its correlation is the sum of the correlation

coefficients of all linear trails that have the specified initial and final selection patterns.

5.4 Propagation of patterns

For DC, the active S-boxes in a round are determined by the nonzero bytes in the

difference of the states at the input of a round. Let the pattern that specifies the positions

of the active S-boxes be denoted by the term (difference) activity pattern and let the

(difference) byte weight be the number of active bytes in a pattern.

5.5 Implementation

 Rijndael can be implemented to run at speeds unusually fast for a block cipher on a

Pentium (Pro). There is a trade-off between table size/performance. Rijndael can be

implemented on a Smart Card in a small amount of code, using a small amount of RAM

and taking a small number of cycles. There is some ROM/performance trade-off.

 6. Weaknesses of Rijndael

There are a few weaknesses about Rijndael that most of them are related to the inverse of

cipher. The most important weaknesses are as follow:

 The inverse cipher is less suited to be implemented on a smart card than the cipher

 itself: it takes more code and cycles.

 In software, the cipher and its inverse make use of different code and/or tables.

 In hardware, the inverse cipher can only partially re-use the circuitry that implements

 the cipher.

7. References

 [Bi93] E. Biham, "New types of cryptanalytic attacks using related keys," Advances in
Cryptology, Proceedings Eurocrypt'93, LNCS 765, T. Helleseth, Ed., Springer-Verlag,
1993,
pp. 398-409.
[BiSh91] E. Biham and A. Shamir, "Differential cryptanalysis of DES-like
cryptosystems,"
Journal of Cryptology, Vol. 4, No. 1, 1991, pp. 3-72.
[Da95] J. Daemen, "Cipher and hash function design strategies based on linear and
differential
cryptanalysis," Doctoral Dissertation, March 1995, K.U.Leuven.
[DaKnRi97] J. Daemen, L.R. Knudsen and V. Rijmen, "The block cipher Square," Fast
Software Encryption, LNCS 1267, E. Biham, Ed., Springer-Verlag, 1997, pp. 149-165.
Also
, Geneva, 1994 (second edition).

