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1. Introduction 
 
This document is to describe Rijndael the new Advanced Encryption Standard. I show the 

mathematics knowledge needed to understand this procedure then we explain the design 

model of the Rijndael .Then I explain implementation of the cipher and the reverse of the 

cipher. Then the advantage of this procedure is explained and we discus the limitations 

existed in this procedure of encryption .We discus the ways this method can be extended 

.I will introduce the references for this kind of encryption at the end of this paper. 

2. Mathematics requirements 

 
We need to know many operations which use bytes to do the operations where bytes are 

Showing elements in the field GF (2 power 8). We have to consider other operations in 
 
terms of 4 bytes word.  Here we explain the basic mathematics needed to implement 
 
Rijndael. 
 
2. A Polynomial representation 
 
To show a polynomial we consider a byte b is made from bits b0, b1, b2, b3, b4, b5, b6, 
 
 b7 .We can consider this byte to show a polynomial as follow: 
 

 

For example a byte that has a hexadecimal value of 47 has a binary value of 01000111  
 
This represents the following polynomial: 
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2. A.1 Addition of polynomials 
 
When we want to add two polynomials together we just add corresponding coefficients in  
 
each polynomial  in mod 2 . For example we have the following equation: 

 
As we can see the binary coefficients in the first polynomial is 10111111 and the binary 

coefficient for the second polynomial is 01110001 and the resulting polynomial has the 

binary coefficient of 11001110. Clearly each bit in the binary coefficient of the result is 

the result of XOR function of corresponding bits in each polynomial. For example we 

have (1+1=0, 0+1=1, 1+0=1 and 0+0=0) 

2. A.2 Multiplication 
 
The multiplication is done in two phase. The first phase looks like the ordinary algebra  

multiplication. We multiply each term of the first polynomial by each term of the second 

one. Then we do addition operation as discussed before .For example we can have the 

following multiplication: 

 

If we have: 

 

Where: 
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Obviously   C(x) can not be shown by a 4-byte vector. By changing C(x) modulo   a  
 
Polynomial   of degree 4, we can reduce the degree to the degree below 4. When we are 
in Rijndael algorithm we must do that by the polynomial:    
 

 
So we will have the modular product A(x) by B(x)   denoted by C(x) is defined as follow: 

 
Where: 
 

 
If we write this equation in the form of matrix multiplication we will have: 
 

 

Let multiply B(x) by x. Then we have: 

 
We can calculate    x⊗B(x) by reducing above result by  

 
Then we will have: 

 
So we can show the multiplication by x using the matrix form as follow: 
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3. Specification 
 
 The Rijndael cipher is a kind of cipher that has iterated block cipher plus a variable 

block length and a variable key length. Numbers of 128, 192, and 256 bits can be used to 

assign to the length of the block and the length of the key. We explain the cipher structure 

in this section. 

3.1 The State, the Cipher Key and the number of rounds 

We refer to the state as all transformations that operate on the intermediate result and the 

intermediate cipher result is called a state .We can use a rectangular array of bytes to 

show a State. We have 4 rows in this array, and we write Nb to show the number of 

columns and can be calculated by dividing the block length by 32.We show all of above 

explanations in the following figure where the state has  Nb=6 and the cipher key has 

Nk=4.Sometimes  these blocks are shown  in the case of  one-dimensional arrays 

consisting  4-byte vectors, when each vector includes the corresponding column in the 

rectangular array representation .Then the  length of these arrays are  4, 6 or  8 

respectively and indices in the ranges 0..3, 0..5 or 0..7. 4-byte vectors will sometimes be 

referred to as words. 

 

A0,0 A0,1 A0,2 A0,3  A0,4  A0,5 

A1,0 A1,1 A1,2 A1,3  A1,4  A1,5 

A2,0 A2,1 A2,2 A2,3  A2,4  A2,5 

A3,0 A3,1 A3,2 A3,3  A3,4  A3,5 

A4,0 A4,1 A4,2 A4,3  A4,4  A4,5 

 



K0,0 K0,1 K0,2 K0,3 

K1,0 K1,1 K1,2 K1,3 

K2,0 K2,1 K2,2 K2,3 

K3,0 K3,1 K3,2 K3,3 

 
Rijndael uses input and output at its external interface and they are one dimensional 

 arrays of 8-bit bytes numbered upwards from 0 to the 4*Nb-1. So the length of the 

blocks is 16, 24 or 32 bytes. The Cipher Key has also one dimensional array which has 8 

bytes numbered upwards starting from 0 to the 4*Nk-1. 

3.2 The round transformation 
The round transformation includes four kind of different transformations. We can write  
 
The round transformation in pseudo code as follow: 
Round (State,RoundKey) 
{ 
ByteSub(State); 
ShiftRow(State); 
MixColumn(State); 
AddRoundKey(State,RoundKey); 
} 
The final round of the cipher is slightly different. It is defined by: 
FinalRound(State,RoundKey) 
{ 
ByteSub(State) ; 
ShiftRow(State) ; 
AddRoundKey(State,RoundKey); 
} 
 
 
3.3 Key schedule 

  The Round Keys are obtained from the Cipher Key using the key schedule. This can 
be       done by two components: the key expansion and the round key selection. The 
main thing is that we have to consider  the following rules: 

 
  The number of  Round Key bits is equal to the length of block multiplied by the 
     number of rounds plus 1. 
 



   The Cipher Key is expanded into an Expanded Key 
 
 
4. Implementation aspects 
 
Rijndael cipher can be implemented on many processors and in good hardware. We 

explain 8-bit processor. When we have 8-bit processor, we can program Rijndael 

implementing the different component transformations. This makes it so straightforward 

when it comes down to RowShift Round Key addition. If we want to implement ByteSub 

we need to have 256 bytes. The Round Key addition, ByteSub and RowShift can be 

combined and executed in the form of serial per State byte. We need to know matrix 

multiplication in the field of GF (2 powers 8) if we want to do the transformation 

MixColumn .We can show this fact as follow: 

Tmp = a[0] ^ a[1] ^ a[2] ^ a[3] ; /* a is a byte array */ 
 
Tm = a[0] ^ a[1] ; Tm = xtime(Tm); a[0] ^= Tm ^ Tmp ; 
 
Tm = a[1] ^ a[2] ; Tm = xtime(Tm); a[1] ^= Tm ^ Tmp ; 
 
Tm = a[2] ^ a[3] ; Tm = xtime(Tm); a[2] ^= Tm ^ Tmp ; 
 
Tm = a[3] ^ a[0] ; Tm = xtime(Tm); • [• •• =̂ T m  ̂T mp ; 
 
Now we explain more to clarify the subject. All coding is done in assembly language. If 

we don’t want to have timing attacks we must pay attention on xtime to implement it by 

taking a fixed number of cycles. We can do that by using dedicated table-lookup. We can 

do key expansion in a cyclic buffer of 4*max (Nb,Nk) bytes. The Round Key is updated 

in between Rounds. We can implement all operations in this key update on byte level. If 

the Cipher Key length and the blocks length are equal or if they differ by factor 2, the 

implementation is so easy. If we don’t have this situation, an additional buffer pointer is 

required. 



4.1 The inverse cipher 
 
In the table-lookup implementation it is essential that the only non-linear step (ByteSub) 

is the first transformation in a round and that the rows are shifted before MixColumn is 

applied. In the Inverse of a round, the order of the transformations in the round is 

reversed, and consequently the non-linear step will end up being the last step of the 

inverse round and the rows are shifted after the application of (the inverse of) 

MixColumn. The inverse of a round can therefore not be implemented with the table 

lookups described above. This implementation aspect has been anticipated in the design. 

The structure of Rijndael is such that the sequence of transformations of its inverse is 

equal to that of the cipher itself, with the transformations replaced by their inverses and a 

change in the key schedule. This is shown in the following subsections. 

The inverse of a round is given by: 

InvRound(State,RoundKey) 
{ 
AddRoundKey(State,RoundKey); 
InvMixColumn(State); 
InvShiftRow(State); 
InvByteSub(State); 
} 
The inverse of the final round is given by: 
InvFinalRound(State,RoundKey) 
{ 
AddRoundKey(State,RoundKey); 
InvShiftRow(State); 
InvByteSub(State); 
} 

5. Strengths and advantages of Rijndael compare to the other known ciphers 

5.1 

 

 



Even though we have large amount of symmetry, this method has ways to eliminate 

symmetry in the behavior of the cipher. This is obtained by the round constants that are 

different for each round.  

5.2 Differential cryptanalysis 
 
DC attacks are possible if there are predictable difference propagation over all but a few 

(Typically 2 or 3) rounds that have a prop ratio (the relative amount of all input pairs that 

for the given input difference give rise to the output difference) significantly larger than  

((2 powers (1- n)) if n is the block length.  

 
5.3 Linear cryptanalysis 
 
LC attacks are possible if there are predictable input-output correlation over all but a few 

(Typically 2 or 3) round significantly larger than (2 power n/2). An input-output 

correlation is composed of linear trails, where its correlation is the sum of the correlation 

coefficients of all linear trails that have the specified initial and final selection patterns.  

5.4 Propagation of patterns 
 
For DC, the active S-boxes in a round are determined by the nonzero bytes in the 

difference of the states at the input of a round. Let the pattern that specifies the positions 

of the active S-boxes be denoted by the term (difference) activity pattern and let the 

(difference) byte weight be the number of active bytes in a pattern.  

5.5 Implementation 
 
 Rijndael can be implemented to run at speeds unusually fast for a block cipher on a 

Pentium (Pro). There is a trade-off between table size/performance. Rijndael can be 

implemented on a Smart Card in a small amount of code, using a small amount of RAM 

and taking a small number of cycles. There is some ROM/performance trade-off. 



 6. Weaknesses of Rijndael 

There are a few weaknesses about Rijndael that most of them are related to the inverse of 

cipher. The most important weaknesses are as follow: 

  The inverse cipher is less suited to be implemented on a smart card than the cipher 

      itself: it takes more code and cycles. 

   In software, the cipher and its inverse make use of different code and/or tables. 

   In hardware, the inverse cipher can only partially re-use the circuitry that implements 

       the cipher. 
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